
Advice Weaving in AspectJ
Erik Hilsdale

PARC

3333 Coyote Hill Rd
Palo Alto, CA 94085

+1 650 812 4735

hilsdale@parc.com

 Jim Hugunin
Want of a Nail Software

 Sunnyvale, CA
+1 650 812 4735

jim-aj@hugunin.net

ABSTRACT
This paper describes the implementation of advice weaving in
AspectJ. The AspectJ language picks out dynamic join points in a
program's execution with pointcuts and uses advice to change the
behavior at those join points. The core task of AspectJ's advice
weaver is to statically transform a program so that at runtime it
will behave according to the AspectJ language semantics. This
paper describes the 1.1 implementation which is based on
transforming bytecode. We describe how AspectJ’s join points
are mapped to regions of bytecode, how these regions are
efficiently matched by AspectJ's pointcuts, and how pieces of
advice are efficiently implemented at these regions. We also
discuss both run-time and compile-time performance of this
implementation.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Implementation and
compilers

General Terms
Performance, Design, Languages

Keywords
Aspect-orientation, bytecode, AspectJ, compilers, weaving

1. INTRODUCTION
There have been three books [9],[5],[11] and numerous articles
[7],[8] written about the AspectJ language [1], but this is the first
discussion of the implementation concerns for AspectJ. Every
AOP language implementation must ensure that aspect and non-
aspect code run together in a properly coordinated fashion. A
central part of this coordination, advice weaving, ensures that
advice runs at the appropriate join points as specified by the
program. This paper describes the implementation of advice
weaving in AspectJ.

We begin with an overview of the AspectJ 1.1 compiler. Then
move on to discuss join point shadows, the process of matching
advice to join point shadows, and the process of implementing
advice at matched shadows. We finish with performance results
and benchmarks, and a discussion of related work.

This paper does not cover the entire AspectJ compiler. AspectJ
contains other crosscutting features than advice, such as inter-type
declarations, declare parents, declare soft, privileged
aspects and non-singleton aspect instances (per* aspects).

We do cover our implementation of declare error and
declare warning, which are implemented through the advice
framework.

2. THE COMPILATION PROCESS
The AspectJ compiler accepts both AspectJ bytecode and source
code and produces pure Java bytecode as a result. Internally it has
two stages. The front-end compiles both AspectJ and pure Java
source code into pure Java bytecode annotated with additional
attributes representing any non-java forms such as advice and
pointcut declarations. The back-end of the AspectJ compiler–the
part that the majority of this paper covers–implements the
transformations encoded in these attributes to produce woven
class files. The back-end can be run stand-alone to weave pre-
compiled aspects into pre-compiled .jar files. In addition, the
back-end exposes a weaving API which can be used to implement
ClassLoaders that will weave advice into classes dynamically as
they are loaded by the virtual machine. This API has been used to
implement dynamic weaving of classes within the eclipse IDE
[13].

2.1 Source File Compilation
The front-end of the AspectJ compiler is implemented as an
extension of the Java compiler from eclipse.org [6]. The source-
file portion of the AspectJ compiler is made complicated by inter-
type declarations, declare parents, declare soft, and
privileged aspects. All of these constructs require considerable
changes to the underlying compiler to modify Java’s name-
binding and static checking behavior.

However, the compilation of advice is relatively simple. Each
advice declaration is compiled into a standard Java method. The
parameters of this new method are the parameters of the advice,
possibly extended with thisJoinPoint reflective information as
described in section 2.1.1. The body of the method is the same as
the body of the advice with special handling for proceed in
around advice described in section 2.1.2.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD ’04, March, 2004, Lancaster, UK.
Copyright 2004 ACM 1-58113-842-3/03/0004…$5.00.

For example, the following advice declaration
before(String s): execution(void go(*)) && args(s)
{
 System.out.println(s);
}

is compiled into a method encapsulating the body of the advice
public void ajc$before$A$a9();
0: getstatic [java/lang/System.out]
3: aload_1
4: invokevirtual [java/io/PrintStream.println]
7: return

The method is annotated with an additional attribute to indicate
that this corresponds to an advice declaration, to store the pointcut
referred to by the advice, and to store additional information
relevant to thisJoinPoint and proceed. For example, our
implementation of around advice needs to know if the advice’s
body contains a call to proceed inside a nested type; the front
end transmits that information to the back end through this
attribute. This attribute is encoded as a standard Java bytecode
attribute [JVM v2 4.7] to be compatible with all JVMs.

All of the parameters to the advice are statically typed and the
weaving process guarantees that the advice will only be called
with appropriate values. This static type checking in the face of
dynamic matching is an important property of AspectJ’s
compilation model.

2.1.1 thisJoinPoint and variants
Within the body of an advice declaration, three special variables
are exposed that can be used to reflectively discover both static
and dynamic information about the current join point. The most
common use of these variables is in tracing and logging
applications. At compile-time, these variables are implemented
by extending the signature of the advice method with three
additional parameters:
 (…, JoinPoint thisJoinPoint,
 JoinPoint.StaticPart thisJoinPointStaticPart,
 JoinPoint.StaticPart
 thisEncolsingJoinPointStaticPart)

This reflective information can be very expensive to compute. The
most expensive part is the creation of an object array to hold the
args, which may need to be converted from primitive values. This
overhead, however, need only be present when the advice requires
the information. So an important performance optimization the
AspectJ compiler performs is to remove from the signature any
special variables that are not referred to within the body of the
advice.

A separate optimization will determine if all uses of thisJoinPoint
can be replaced with thisJoinPointStaticPart. If this is true, then
references to thisJoinPoint are replaced with references to
thisJoinPointStaticPart to avoid the creation of a JoinPoint object
at every matching dynamic point in the program’s execution.

2.1.2 proceed
Around advice in AspectJ uses the special form proceed to
continue with the normal flow of execution at the corresponding
join point. In the front-end, this special form is implemented by
generating a method which takes in all of the original arguments
to the around method plus an additional AroundClosure object
that encapsulates the normal flow of execution which has been

interrupted by the advice. The body of the proceed method will
call a method on the AroundClosure to continue with the
execution, passing in any parts of the state that have been
modified by the around advice.

2.2 Bytecode transformation
The back-end of the AspectJ compiler instruments the code of the
system by inserting calls to the precompiled advice methods. It
does this by considering that certain principled places in bytecode
represent possible join points; these are the “static shadow” of
those join points. For each such static shadow, it checks each
piece of advice in the system and determines if the advice's
pointcut could match that static shadow. If it could match, it
inserts a call to the advice’s implementation method guarded by
any dynamic testing needed to ensure the match.

For example, consider the simple before advice in 2.1. The
pointcut on this advice specifies that it should be run before the
execution of every void method named go when called with a
single String argument. The weaver must instrument the bytecode
to insert calls to the before advice whenever this condition is met.

For example, consider the following empty method:
void go(java/lang/Object):
0: return

The weaver can statically determine that an execution of this
method may match the pointcut and cause the advice to execute.
However, a dynamic test must be inserted to check whether or not
the type of the argument to the method is a String and only invoke
the before advice when this condition is met. This will produce
the following woven code:
void go(java/lang/Object):
0: aload_1 # defensive copy of first argument
1: astore_2 # into temporary frame location
2: aload_2 # check whether argument
3: instanceof [String] # is actually a String
6: ifeq 19 # if not, skip advice
9: invokestatic [A.aspectOf] # get aspect
12: aload_2 # load argument again
13: checkcast [String] # guaranteed to succeed
16: invokevirtual [A.ajc$before$A$a3] # run advice
19: return

In order to achieve good performance in woven code, the weaver
needs to eliminate these kinds of dynamic checks whenever
possible. For example, if the static type of go’s parameter is
Number, the weaver can statically determine that the pointcut can
never match this join point and no code will be woven. On the
other hand, if the static type of go’s parameter is String then the
dynamic tests can be eliminated resulting in a direct call to the
advice:
void go(java/lang/String):
0: invokestatic [A.aspectOf]
3: invokevirtual [A.ajc$before$A$a3]
6: return

AspectJ advice is always run in the context of an aspect
instance—thus the advice method is non-static. By default aspect
instances are singletons accessed through the aspectOf static
method. AspectJ does allow non-singleton aspect instances
through per* clauses, but they are beyond the scope of this paper.

We will describe the matching and weaving processes in more
detail in sections 4 and 5 respectively.

3. Join point shadows
In the AspectJ language model, a join point is a point in the
dynamic call graph of a running program where the behavior of
the program can be modified by advice. Every dynamic join point
has a corresponding static shadow in the source code or bytecode
of the program. The AspectJ compiler inserts code at these static
shadows in order to modify the dynamic behavior of the program.
The other possible implementation would be to modify the JVM
or to use runtime hooks as provided by the debugging APIs to
more directly match the dynamic join point model in the AspectJ
language.

3.1 What defines a join point shadow?
There are 11 kinds of join point shadows in AspectJ-1.1, and
these are all shown in Table 1. That table also includes two join
points that have been proposed for future versions of the language
to show the extensibility of the model.

Every join point shadow is defined by a kind, a signature, and a
region of bytecode. Each shadow also has a source location that
is given by the SourceFile attribute of the enclosing class file
[JVM v2 4.7.7], and whose line number is determined from the
LineNumberTable attribute [JVM v2 4.7.8].

Almost all join point shadows can be clearly defined in terms of a
bounded region of bytecode. There are a few exceptions.
Initialization shadows require all constructors within a method to
be inlined in order for their bytecode segment to be correct. This
is done lazily only if needed. In addition, exception-handler
shadows do not have a clearly defined end-point.

Each join point also exposes up to three pieces of state.

• this – the currently executing object. In a static context this is
always none, and in an instance context this can always be
found with aload_0.

• target – the target object of the join point

• args – the arguments to the join point

This state can be used for matching and exposed by the pointcut
designator language in AspectJ. It can also be accessed through a
reflective object which exposes only the static part of the context
(thisJoinPointStaticPart) or all of the state including this, target
and args (thisJoinPoint).

3.2 The shadows of “hello world”
Let's look at the bytecode for a simple hello world program:
0: getstatic [java/lang/System.out]
3: ldc [String hello world]
5: invokevirtual [java/io/PrintStream.println]
8: return

There are three shadows in this short program. The previous
section discussed the method-execution shadow which is wrapped
around all of the code above from #0-#8. Next is the field-get
shadow which is represented by the single bytecode at #0. The
third shadow is for the method-call at #5.

Weaving advice into this method-call shadow is straight-forward
and very similar to weaving into a method-execution shadow as
described before. In this case, the inserted call must go before the
invokevirtual instruction rather than at the beginning of the
method, e.g.

Table 1. Join point shadow kinds

kind signature this target args Bytecode shadow

Method-execution method ALOAD_0
or none Same as this Local vars Entire code segment of method

Method-call method ALOAD_0
or none From stack From stack Invokeinterface, invokespecial (only for

privates), invokestatic, invokevirtual

Constructor-execution constructor ALOAD_0 Same as this Local vars Code segment of <init> after call to super

Constructor-call Constructor ALOAD_0
or none None From stack Invokespecial (plus some extra pieces)

Field-get Field ALOAD_0
or none From stack none Getfield or getstatic

Field-set Field ALOAD_0
or none From stack From stack Putfield or putstatic

Advice-execution None ALOAD_0 Same as this Local vars Code segment of corresponding method

Initialization Corresponding
constructor ALOAD_0 Same as this Complex Requires in-lining of all constructors in a

given class into one

Static-initialization Typename None None None Code segment of <clinit>

Pre-initialization Corresponding
constructor None None Local vars Code segment of <init> before call to

super, this may require in-lining

Exception-handler Typename of
exception

ALOAD_0
or none None From stack

Start is found from exception handler table.
(only before advice allowed because end is

poorly defined in bytecode)
Exception-throws

(not in AspectJ-1.1)
Typename of

exception
ALOAD_0

or none None From stack athrow

Synchronized-block
(not in AspectJ-1.1)

Typename of
lock object

ALOAD_0
or none None From stack Code between monitorenter/monitorexit

pair

0: getstatic [java/lang/System.out]
3: ldc [String hello world]
 5: invokestatic [A.aspectOf]
 8: invokevirtual [A.ajc$before$A$15a]
11: invokevirtual [java/io/PrintStream.println]
14: return

Here the call to the advice has been inserted just before the
invokevirtual instruction corresponding to the shadow.

3.2.1 Exposing state for method-call
Exposing state at a method call is slightly more difficult because
the target and args are sitting on the stack rather than in local
variables. If we need to expose this state, then we will need to
pull this information off of the stack into temporary variables, use
these variables to provide the state to the advice, and then push
these variables back onto the stack to make the original call, i.e.
0: getstatic [java/lang/System.out]
3: ldc [String hello world]
 5: astore_1
 6: astore_2
 7: invokestatic [A.aspectOf]
 10: aload_2
 11: invokevirtual [A.ajc$before$A$15a]
 14: aload_2
 15: aload_1
16: invokevirtual [java/io/PrintStream.println]
19: return

• 5-6 – store the contents of the stack in local variables

• 10 – load the target object for the call to the advice

• 14-15 – push the local variables back onto the stack for the
call

Optimization note: The size of this code could be reduced if we
recognized that the argument to the method is a constant value.
This standard analysis may be worth doing in the future.
However, this optimization would need to be very conservative.
For example, the getstatic operation can not be moved as it has
potential side-effects if the class the field is on has not yet been
initialized. Any changes from this simple model must not be
observable without inspecting the bytecodes themselves.

4. Matching
Advice and other advice-like entities are represented by shadow
munger objects. A shadow munger performs transformations on
join point shadows matched by its contained pointcut designator
(PCD). There are shadow mungers for all 5 kinds of advice,
declare error, declare warning, declare soft, control
flow entry and exit, and per* aspect creation.

During the weaving process, the PCD for each shadow munger is
matched against each join point shadow in the bytecode being
processed. Because the AspectJ language defines a join point as a
dynamic point in the call graph of the running program, the
matching process might not be completely statically resolvable.
When the PCDs depend on the dynamic state at the join point this
mismatch is resolved by adding a dynamic test that captures the
dynamic part of the matching. We call this dynamic test the
residue of the match.

4.1 Residues
4.1.1 If residue
The if PCD specifies an arbitrary expression to evaluate at each
join point. Static matching against this PCD is always true and
results in nothing but a dynamic residue. The residue is
implemented by compiling the if expression into a static test
method in the type declaring the PCD. If any join point state is
required for the test, that state is passed into the new static method
as arguments. The PCD then resolves to a dynamic test which will
call the corresponding method. For example, the advice
before(): execution(void main(*))
 && if(Tracing.level == 1) {
 System.out.println("got here");
}

when applied to our simple hello world program will result in
0: invokestatic [A.ajc$if_0] # dynamic test
3: ifeq 12
 6: invokestatic [A.aspectOf]
 9: invokevirtual [Method A.ajc$before$A$a6]
12: getstatic [java/lang/System.out]
15: ldc ["hello world"]
17: invokevirtual java/io/PrintStream.println]
20: return

An interesting area for future work would be to consider partial
evaluation optimizations for more precise static matching.

4.1.2 Instanceof residues
The three PCD’s this, target and args all define matching
based on the dynamic type of the state exposed at a join point. All
three of these potentially add a dynamic instanceof test to join
point shadows that they matched. As we explained in section 2.2,
this residue is only generated when we can’t statically determine
that a match will always or never succeed.

4.1.3 Cflow residue
The cflow PCD in AspectJ allows matching join points that are
within the dynamic control-flow of other join points. In AspectJ-
1.1 this matching is implemented entirely as a dynamic test on the
join point. No static analysis is performed to try to determine
whether a cflow match is either always or never possible. It is
unclear that such static analysis could be useful in anything except
the simplest examples without requiring whole-program analysis.
And even with whole-program analysis, there are cases in the
presence of reflective calls where static analysis of cflow is
impossible.

The current implementation of cflow uses a thread-local stack to
keep track of the entries and exits of join points that match the
predicate join point. This stack is updated by a shadow munger
similarly to how advice is woven, see 5.2.5. Matching of a cflow
PCD is then a simple matter of testing the appropriate thread-local
stack. If state is exposed by the cflow PCD, that state is stored in
the same thread-local stack described above in CFlowPlusState
objects.

4.2 Fastmatch
Matching every join point shadow in every class file can be a time
consuming process. Section 6 shows that just this matching
process can more than double the time to compile a large system.
This performance issue can be even more significant for load-time
weaving where this matching overhead can be visible to the user.

AspectJ-1.1 uses a fastmatch pass to improve matching time. In
this pass, every shadow munger is matched to the constant pool
information in each class file. This information can be computed
very cheaply so this is an extremely fast process. Currently, the
only PCD for which fastmatch is implemented is within. This is
the easiest possible case that can be determined solely from the
fully-qualified name of the class being matched against. This is
an area where we expect to see significant improvements to
dramatically reduce weaving times in future versions of AspectJ.

Another unimplemented optimization would be to expand the
notion of fastmatch to determine which kinds of join points could
be matched by the valid shadow mungers. For example, if the
current shadow mungers can only apply to method-execution join
points, then performance could be significantly improved by
never considering all of the 10 other kinds of join point shadows
that will be present in the class file.

4.3 Synthetic methods and matching
Compilers for the Java language generate methods and fields that
are not in the original source code. This is done primarily for
assert, the .class expression, and inner class implementation.
These synthetic constructs are not considered join points in the
AspectJ language model. Therefore the implementation needs to
use the SYNTHETIC attribute in the Java bytecode [JVMS v2
4.7.6] to recognize and exclude these potential join point
shadows.

There are many additional synthetic methods added by the
AspectJ compiler that are not described in this paper. These
include the implementation of inter-type declarations and per*
aspects. These constructs are labeled with the AJ_SYNTHETIC
attribute that may also specify an effective signature that should
be used to represent them for the purposes of PCD matching.

5. Weaving
Once the weaver has matched various shadow mungers to each
join point shadow, the mungers themselves are implemented in
two stages. First, any context that is needed by any of the shadow
mungers is exposed at the join point. Next, each shadow munger
is applied to the shadow, changing the bytecode to implement the
desired behavior. There are many different kinds of shadow
mungers, each with a different kind of expansion.

5.1 Context exposure
First, all the shadow mungers are queried to determine what state
they need and the bytecode is modified to expose that state into
local variables. The state needs is that exposed by the this,
target and args PCDs. For join point shadows where this state
is on the frame (see Table 1. Joinpoint shadow kinds) this simply
involves making a copy of frame contents.

When the arguments are on the stack instead, they must be
popped into local variables and then pushed back onto the stack to
make the original call. An example of this transformation for a
method-call join point is shown in section 3.2.1. This exposure
step results in a join point shadow equivalent to the original
program except that all state exposed by this, target, and args
PCDs is in frame locations.

If any of the shadow mungers refer to thisJoinPoint, then this
exposure step will also include the creation of a new JoinPoint
instance for this join point. This object will be created with all of
the state from this, target and args.

Note that this context exposure is done once and only once for
each matched join point shadow, regardless of the number of
shadow mungers that have matched it.

5.2 Shadow Munger Implementation
Once a shadow is transformed to expose context, each shadow
munger that matched the shadow is implemented in turn. Each
shadow munger transforms the shadow by adding code inside the
boundary of the shadow. This means that after one shadow
munger is implemented, the next shadow munger to be
implemented on the same shadow will encapsulate the shadow
including the advice; thus, pieces of advice must be woven in
inverse precedence order.

5.2.1 Before Advice
The simplest application is before advice. It is a property of a join
point shadow that there is only one entry point to the shadow:
shadows in switch statements do not, for example, split across
multiple case lines. This means that before advice is
comparatively easy: We simply insert the call to the advice
method at the beginning of the shadow. We’ve already shown
many examples of weaving before advice in earlier sections of this
paper.

5.2.2 After Returning Advice
After returning advice is more difficult, because there are
potentially many exit points from a shadow. There are two cases.
The first is that there is exactly one exit point from the shadow,
the fallthrough to the next instruction. This is the case for
shadows of the call join point, for example. The other case is that
there are potentially many exits, but all are return bytecodes
(return or one of its typed variants such as ireturn). This is
the case for shadows of the execution join point, among others.

After returning advice on the first case simply involves inserting
code to possibly expose the return value, if needed, and then
calling the advice.

In the second, more complicated, case we first process the join
point shadow, converting the return bytecodes into gotos
jumping to an inserted return bytecode at the end of the shadow.
We then insert the advice call at the single return bytecode. This
avoids duplicating the advice invocation code. Figure 1 shows
the effect of weaving a piece of after returning advice on an
implementation of factorial with two ireturn bytecodes.

5.2.3 After Throwing Advice
While a join point shadow may have many exit points, for after
throwing advice the only ones we care about are abrupt exits with
an exception. These are simply captured by adding a new entry to
the enclosing method’s exception handler table for the bytecode
region corresponding to the shadow. The code for the handler
contains the call to the advice and is inserted at the end of the
shadow. A goto is inserted to branch around the handler when
necessary.

5.2.4 After Finally Advice
After finally advice represents advice that should run both after
returning and after throwing. In previous versions of AspectJ, this
was implemented by a finally block that was compiled using jsr
and ret bytecodes to avoid code duplication. In AspectJ 1.1,
having already abstracted the advice instructions into methods, we
are able to implement after finally advice simply as the
composition of after returning and after throwing advice,
duplicating the call to the advice but not the advice itself.

5.2.5 Control Flow entry and exit
The implementation of the cflow pointcut requires a single
shadow mungers for the entry and exit from a particular join
point. Control flow entry is implemented as if it were before
advice and control flow exit as if it were after finally advice.
Instead of calling an advice method, however, the action taken is
to manipulate a control-flow stack. Note that this must be
implemented as a single shadow munger that performs any
dynamic tests all at the same time before entering the join point
and stores the result in a local boolean variable. If the dynamic
test was performed on both entry and exit it might have different
results leaving the control-flow stack in an inconsistent state.

5.2.6 Around Advice
The most complicated advice implementation is for around
advice. This is because around advice must completely
encapsulate its join point shadow into its proceed call.

Like other kinds of advice, an around advice declaration is
compiled into a method, taking as arguments any advice
parameters. In addition, though, it takes one additional argument,
an AroundClosure object. Any calls to proceed in the body of
the advice are represented by calls to a run method on that
AroundClosure. Recall also that the front end sets an attribute as
to whether there was a call to proceed from within a nested type.

When around advice is woven at a particular shadow the bytecode
for the shadow is first extracted into its own method, accepting as
arguments any free variables from the enclosing method. How
that method is called depends on whether the advice had a call to
proceed from a nested type.

If there was a proceed call in a nested type the weaver must
assume that the call to proceed is closed over. Therefore we
need to create a closure object for the proceed call. We create a
new subclass of AroundClosure whose run method dispatches to
the new shadow method. In place of the shadow is left code that
instantiates an instance of the new subclass and passes that
instance to the around advice (in addition to any state the around
advice requires).

If, however, we do not need to create a closure object, we instead
inline the around advice. This involves copying the code for the
advice method replacing the call to the AroundClosure’s run
method with a call to the extracted shadow method. This avoids
not only the runtime cost of storing closure state, but also the cost
of generating a new class.

5.2.7 Declare warning and error
These are matched to join points in the same way as advice.
However, instead of modifying the bytecode for the join point,
they generate a message to the user indicating either a warning or
an error. There is a restriction in the language that these
constructs can’t use any PCDs that could produce a dynamic
residue as part of their matching process.

5.3 Why we don’t inline advice code
The primary performance overhead of AspectJ code is caused by
the aspect-instance lookup and method call. This overhead could
be eliminated if the weaver would inline the advice code directly
into the join point. Previous versions of AspectJ used this
implementation strategy.

Inlining can be done much more effectively by a JIT than by a
tool that has to follow Java’s access rules. Code within an aspect
must follow Java’s standard lexical accessibility rules. If code
within advice access private members on the aspect, or package-
visible members in the aspects package, these members would not
normally be visible if the code is moved to another class in a
different package. In order to address this problem we would
need to either increase the visibility of the accessed members,
which would let anyone see them and could even break our
inheritance hierarchy. We could add synthetic accessor methods
with mangled names to expose these fields; this would be very

static int fact(int);
0: iload_0
1: ifne 8
4: iconst_1
5: goto 19
8: iload_0
9: iconst_1
10: isub
11: invokestatic [fact]
14: iload_0
15: imul
16: goto 19
19: dup
20: istore_1
21: invokestatic [A.aspectOf]
24: iload_1
25: invokevirtual [A.ajc$afterReturning$A$ff]
28: ireturn

static int fact(int);
0: iload_0
1: ifne 6
4: iconst_1
5: ireturn
6: iload_0
7: iconst_1
8: isub
9: invokestatic [fact]
12: iload_0
13: imul
14: ireturn

after() returning(int i):
 execution(int fact(int))

Figure 1. After Returning Advice

similar to the approach taken for implementing Java’s inner
classes, except it has the additional concern that it must often
expose members to other packages. A more sophisticated
authentication scheme could probably be devised with even more
performance and implementation overhead.

We do use this inlining strategy for the default (non-closure)
implementation of around advice; as well as for privileged aspects
which are allowed to access other type’s members without
respecting Java’s accessibility rules. In many cases the
performance overhead of these accessor methods would destroy
any gains achieved by inlining the advice code originally.

Given the ever-improving quality of JITs for Java, inlining
optimizations must be carefully considered. Without careful
benchmarking there is as much potential for reducing the
performance of the resulting system as for improving it.

6. Compile time performance
Because an AspectJ compiler (ajc) needs to do more work than a
pure Java compiler, we expect that it will take longer to compile a
system. This section measures the overhead in compile time
introduced by using ajc vs. the standard javac compiler from Sun.

We chose to measure performance of one large system rather than
several small ones. Given the extreme and dynamic optimizations
performed by modern JITs, we believe that performance
measurements on a real application will most accurately reflect
the performance seen by AspectJ developers in practice. We
chose the logging aspect as it is the most invasive of the widely
used AspectJ aspects.

We measure the time required to compile the xalan xslt processor
from apache.org [16] under both ajc and several versions of the
standard java compiler from Sun. This system has 826 source
files with 144,631 non-comment/non-blank lines of code. All
tests in this section and the next were run were run on a 1.4GHz
Pentium-M processor with 768MB of RAM under SUN’s j2sdk-
1.4.2.

0

5

10

15

20

25

30

35

40

45

jav
ac

14

jav
ac

13
No

Lo
g

Lo
gO

ne
A

Lo
gO

ne
B

Lo
gA

ll-1

Lo
gA

ll-1
0

se
co

n
d

s

Figure 2. Compile time for xalan with different aspects

The first three results show that ajc is about 62% slower than the
1.4 javac compiler and 34% slower than the 1.3 javac compiler
when compiling pure java code. This extra performance overhead
is caused by the need to analyze the generated classes to see if any
advice might need to be woven into them. It’s expected that this
overhead can be reduced in future releases by straight-forward
engineering work.

For the next tests we add different aspects to the system. The first
aspect contains a single piece of advice that adds logging to
exactly one method in xalan (LogOneA). This advice uses the
within PCD to make explicit the single class that it can apply to.
Because of the efficient fastmatch code described in section 4.2,
adding this aspect introduces barely any overhead over the
compile with no aspects.

In the next test, we modify the advice so that it doesn’t use the
within PCD (LogOneB). This advice still applies only to a
single method in the xalan code, but because this isn’t recognized
by the fastmatch code the advice must be matched against every
join point shadow in xalan. This minor change results in a major
256% increase in compile time.

The final two tests modify the advice to add logging to all
methods in xalan. They do this with either one (LogAll-1) or ten
different (LogAll-10) pieces of advice for each method execution
join point shadow. These changes to actually weave advice add
relatively small 8% and 13% additional overhead compared to the
previous test that did minimal weaving but required matching for
all join point shadows in the code. This shows that the most
important performance bottleneck in the AspectJ 1.1 weaver
comes from collecting all of the join point shadows for matching
against any viable shadow mungers.

There are three main ways to improve compile-time. Basic
engineering work should be able to reduce all of the overheads in
a similar way to the 21% performance gain Sun achieved from
javac-1.3 to javac-1.4. Clearly, improving the fastmatch
algorithm to handle more cases could have a dramatic impact on
the compile-time when aspects don’t affect a large fraction of the
classes in a system. The final approach to improving performance
is to support incremental recompilation so that the whole system
isn’t rebuilt every time. AspectJ 1.1 has support for an
incremental compilation mode, but further investigation of that
subject is beyond the scope of this paper.

7. Performance of woven code
The implementation of advice weaving introduces very little
performance overhead when compared to the same functionality
coded by hand. The current weaving implementation adds a static
field lookup and a call to a final method compared to a hand-
coded implementation that would inline the advice code. This
section will explore the addition of an aggressive logging policy
to a realistic system in order to assess the performance overhead
of advice in AspectJ 1.1.

7.1 Basic benchmark
Logging as an aspect is frequently used as an example of the
advantages of AOP. A standard implementation of logging
requires the modification of virtually every method in a system by
hand. AOP implementations instead capture this policy in one
place. On the other hand, logging is also the kind of application
where performance overhead is most important. Because logging
policies affect a huge number of methods in a system, even a
small performance impact will be noticeable in overall system
performance.

For this example we will use a simple but very aggressive logging
policy to log all method entries in the xalan code base but not in
the libraries that it uses. We will use the standard logging API
available in j2se-1.4 to implement the actual logging.

We measure the performance impact of these changes with the
XSLTMark benchmark [17] that is often used to compare the
performance of different XSLT implementations. Our
performance numbers measure the execution time for the entire
XSLTMark benchmark suite with the exception of 5 test cases
that were found to fail (dbonerow, html, xslbench1, xslbench2,
xslbench3).

7.1.1 Hand-coded implementation
As a base-line, we used a standard bytecode manipulation toolkit
to produce a version of the code corresponding to a hand-coded
implementation of this kind of logging policy. This
implementation is equivalent to making the following changes to
the code by hand.

The following static field is added to each of the 826 classes:
static Logger log = Logger.getLogger(“xalan”);

and a call is added to the beginning of each of the 7711 methods:
log.entering(“<ClassName>”, “<MethodName>”);

The logging API promises that the Logger.entering method will
run extremely fast in the case that logging is disabled so no guard
method to check whether or not logging is enabled is needed and
adding such a check does not have a noticeable impact on
performance.

7.1.2 A naïve AspectJ implementation
We also wrote the simplest possible aspect that could capture this
same logging policy. It uses before advice to make the same
log.entering call at the entrance to every method in the xalan
code base.
public aspect Trace {
 private static Logger log =
 Logger.getLogger(“xalan”);

 pointcut traced():execution(* *(..));

 before(): traced() {
 Signature s =
 thisJoinPointStaticPart.getSignature();

 log.entering(
 s.getDeclaringType().getName(),
 s.getname());
 }
}

7.2 Initial Performance Overhead Results

With logging enabled, there is a little more than a 600X
performance slow-down to the application. The AspectJ
implementation is about 3% slower than the hand-coded
implementation. This difference is barely noticeable. However,
this is not the situation in which people are typically concerned
about the performance overhead of a logging implementation.
The important case is to consider the overhead when logging is
disabled.
With logging disabled we find a huge performance overhead for
the naïve AspectJ implementation. This 2900% overhead is
equivalent to 2221 nsec per method execution.

0

100

200

300

400

500

600

700

no logging hand-coded naïve AspectJ

L
o
g
g
in

g
 O

ve
rh

ea
d

Figure 3. Overhead with logging enabled

0

5

10

15

20

25

30

35

no logging hand-coded naïve AspectJ

L
o
g
g
in
g
O
ve

rh
ea

d

Figure 4. Overhead with logging disabled

7.2.1 The performance costs of Class.getName()
The main performance overhead in a naïve AspectJ
implementation of tracing is the cost of calling
Class.getName(). This was a surprising result and indicates a
deficiency in AspectJ’s reflection API. In AspectJ-1.2, we will
add a method Signature.getDeclaringClassName() to work
around this deficiency in the underlying Java reflection
implementation.

Because Class.getName() is a native method, its
implementation is unavailable to most Java developers. To better
understand the performance issues, we implemented a very simple
test which called the method a large number of times for classes
whose names had varying lengths. We discovered the following
simple behavior, each call has a fixed overhead of 325ns with an
additional overhead of 43ns per character in the classes name.
This suggests that a new String object is being constructed for
each call to this method. We can also conclude from this that the
average length of class name in the xalan code is about 45
characters.

0

500

1000

1500

2000

2500

3000

3500

0 10 20 30 40 50 60 70

Length of Class Name

n
se

cs

Figure 5. Time for one call to Class.getName()

7.3 More efficient AspectJ implementations
It’s clearly important to avoid calls to Class.getName() for an
efficient AspectJ implementation of tracing. We can do this by
calling the log.loggable method before calling
Class.getName() to prepare the arguments for the call to
log.entering. This one-line change will reduce the overhead
of the AspectJ implementation from 2500% to a more reasonable
82% compared to the hand-coded implementation.
before(): traced() {
 if (!log.isLoggable(Level.FINER)) return;
 ...
}

Further performance improvements to the AspectJ code can be
found by putting the log.loggable test in an if PCD. This will
put the check in a single static method further improving
performance.
pointcut traced(): execution(* *(..)) &&
 if (log.isLoggable(Level.FINER));

This is the fastest AspectJ implementation that doesn’t change or
restrict the tracing policy in any way. The performance overhead
of this implementation is just 22% greater than the overhead
caused by the hand-coded implementation and is unlikely to be
noticeable in most applications.

If the remaining performance overhead is still an issue, the
modular implementation made possible by AspectJ makes it easy
to consider small changes to the tracing policy that can improve
performance considerably. One option is to add a static enabled
field to the aspect that must be set in addition to the normal logger
API calls to enable logging.
static boolean enabled;
pointcut traced(): execution(* *(..)) &&
 if (enabled) && if(log.isLoggable(Level.FINER));

If this field is used, then the AspectJ implementation will perform
better than the standard hand-coded logging implementation by a
76% margin. Obviously, this same test could be added to the
hand-coded logger, but that would require modifying and
maintaining this modification at 7700 different places in the code.

The most extreme optimization that AspectJ makes possible is to
completely remove the logging code from the system by not
including the aspect in a high-performance build. This will result
in absolutely no performance overhead, with the consequence that
logging can not be turned on dynamically at runtime.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

no
 log

gin
g

ha
nd

-co
de

d

As
pe

ctJ
 lo

gg
ab

le

As
pe

ctJ
 if(

log
ga

ble
)

As
pe

ctJ
 if(

en
ab

led
)

O
ve

rh
ea

d

Figure 6. Overhead of efficient AspectJ implementations

7.4 Performance Conclusions
The best AspectJ implementation of logging adds a 22% overhead
relative to the hand-coded logging implementation. This is an
upper bound on the performance overhead for well-written advice
because there is almost no work taking place within the body of
the advice itself. More complicated aspects will have
considerably less overhead as more time is spent in the advice and
less in the dispatch process.

We also found that we could easily modify the AspectJ code to
experiment with different logging designs. This led to a design
which incorporates an additional static boolean field.
Implementing this change in AspectJ required changing 2 lines of
code vs. 7700 that would be required to change in the hand-coded
implementation. This slightly altered logging policy has 76% less
overhead than the hand-coded implementation. This ability to
quickly experiment with different designs means that systems
built with AspectJ can often have better performance in practice
than their less flexible hand-coded counterparts.

The small performance overhead found in the current AspectJ
implementation could be eliminated by performing aggressive
inlining during weaving. However, there are many reasons why
we have decided not to implement this inlining in the current
release of AspectJ. These are discussed in section 5.3. However,
these sorts of optimizations will probably appear either in JIT
improvements or in future versions of AspectJ and other AOP
systems. As AOP matures, the performance overhead for well-
written aspect code should fall close to zero.

Nevertheless, our performance measurements revealed that
AspectJ gives programmers the ability to write extremely
inefficient code quickly and easily. The naïve logging
implementation showed a 2900% performance overhead. This is
always a danger with new and powerful tools. As is the case with
any programming language, addressing the potential performance
pitfalls of poorly written code will depend more on education than
on technical improvements to the tools themselves.

8. Related Work
There are many different ways to implement advice for Java. The
two primary approaches are either to generate a transformed Java
program with the advice semantics encoded in it or to modify the
virtual machine to provide additional hooks at run-time.

The Just-In-Time aspects project [15] is one of the few that
modifies a JVM to directly implement advice semantics. These
approaches hold promise for very dynamic weaving support at
some stage in the future; however, they currently require
substantial performance overheads to be used. The greatest
practical performance overhead of this approach is that the
implementations only run on research JVMs which are noticeably
slower than the latest production machines.

There are two main approaches to transforming a Java program to
implement advice. One approach is to insert generic hooks at all
possible join point shadows at transformation-time. This
approach allows for specific advice to be dynamically added or
subtracted from these points at run-time. This is the approach
taken in JBoss [3] and Handi-Wrap [2]. The primary drawback of
this implementation strategy is that it adds some measurable
overhead to every join point shadow that it exposes. JBoss
reduces this impact by using a coarse-grained join point model
that only captures method and constructor executions. However,

this performance impact would be very substantial if used for all
of AspectJ’s fine-grained join points.

Hyper/J [14] was the first AOSD system to be implemented by
transforming existing Java bytecodes.

AspectJ’s implementation transforms a Java program in the
presence of a particular set of advice. The weaving process then
only inserts code at those join point shadows that could be
matched by some advice. It is still possible in this system to
enable and disable aspects efficiently at run-time. The
“if(enabled)” version of the logging aspect in section 7.3 is a good
example of this.

AspectJ’s implementations have used every form of
transformation imaginable for a Java program. The earliest
versions operated as preprocessors using javac as a back-end. The
1.0 version of AspectJ could operate as both a preprocessor and a
full source-code compiler. The 1.1 version described in this paper
operates as a bytecode transformer.

The AspectJ story has always been one of being a language rather
than a meta-language or transformation framework. The current
implementation of AspectJ, however, shares many properties with
such frameworks and meta-languages. One such framework is
Jmangler [10]. AspectJ’s shadow mungers are similar to
Jmangler’s code transformer, (and AspectJ’s type mungers—used
to implement inter-type declarations—are similar to Jmangler’s
interface transformations). They have similar power, but AspectJ
does not attempt to follow Jmangler’s automatic composition
rules; instead, it leaves composition order in the hands of the
programmer. The programming framework of Javassist [4] is also
similar to AspectJ’s implementation, with its traditional additions
corresponding to type mungers and its new bytecode weaving
portion corresponding to shadow mungers. Since both of these
are explicitly meta-programming tools and deal with code
directly, neither of these has the notion of runtime residuals that
AspectJ’s semantics requires.

9. Summary
The AspectJ compiler must fulfill two requirements of correctness
and performance. Correctness means that it must faithfully
implement the AspectJ language semantics. Performance requires
not only that the compiler perform adequately but that the woven
code must have roughly the same performance costs as would a
hand-implemented cross-cutting concern.

This paper has presented the AspectJ advice weaving
implementation as a mirror of the AspectJ language, from the
representation of a piece of advice as an annotated method, to the
representation of a join point as a region of bytecode plus residue,
to the matching and implementation rules for the application of a
piece of advice to a join point.

It has presented benchmarks that show the AspectJ compiler has
performance comparable to Sun’s javac when weaving aspects
that only affect a small number of classes. When weaving
concerns that crosscut the entire system it adds a significant 4x to
the compile-time; however, this is an acceptable overhead for a
large number of applications. Finally, we showed that the woven
code for a modular logging policy captured by AspectJ has
performance comparable to a tedious and tangled by-hand
implementation of that same policy.

10. References
[1] The AspectJ Team. AspectJ programming guide.

http://dev.eclipse.org/viewcvs/indextech.cgi/
~checkout~/aspectj-home/doc/progguide/index.html

[2] Jason Baker and Wilson Hsieh. Runtime Aspect Weaving
Through Metaprogramming. AOSD 2002. Enschede, The
Netherlands. April 2002.

[3] Bill Burke and Adrian Brock. Aspect-Oriented
Programming and JBoss. http://www.onjava.com/lpt/a
/3878.

[4] Shigeru Chiba and Muga Nishizawa. An Easy-to-Use
Toolkit for Efficient Java Bytecode Translators. GPCE
2003. Springer-Verlag, 2003

[5] Joseph Gradecki and Nicholas Lesiecki. Mastering
AspectJ: Aspect-Oriented Programming in Java. John
Wiley and Sons. 2003.

[6] JDT core compiler version 2.1.1. http://eclipse.org

[7] Gregor Kiczales., et al. An Overview of AspectJ. 15th
European Conference on Object Oriented Programming
(ECOOP). Springer. June 2001.

[8] Gregor Kiczales et al. Getting Started with AspectJ.
Communications of the ACM. Volume 44 , Issue 10
 (October 2001).

[9] Ivan Kiselev. Aspect-Oriented Programming with AspectJ.
SAMS. 2002.

[10] Günter Kniesel, Pascal Costanza, Michael Austermann.
JMangler - A Framework for Load-Time Transformation of
Java Class Files. IEEE Workshop on Source Code Analysis
and Manipulation (SCAM), colocated with International
Conference on Software Maintenance (ICSM). November
2001.

[11] Ramnivas Laddad. AspectJ in Action: Practical Aspect-
Oriented Programming. Manning Publications Company.
2003.

[12] Tim Lindholm and Frank Yellin. The Java Virtual Machine
Specification 2nd Edition. Addison Wesley. 1999.

[13] Martin Lippert. An AspectJ-Enabled Eclipse Core Runtime.
OOPSLA 2003 Poster Session. Anaheim CA. October
2003.

[14] Harold Ossher and Peri Tarr. Hyper/J: multi-dimensional
separation of concerns for Java. In Proceedings of the
International Conference on Software Engineering (ICSE).
ACM, Limerick, Ireland. 2000.

[15] Andrei Popovici, Gustavo Alonso, and Thomas Gross.
Just-In-Time Aspects: Efficient Dynamic Weaving for
Java. AOSD 2003, Boston, MA. 2003.

[16] Xalan-2.5.1. http://xml.apache.org/xalan-j.

[17] XSLTMark-2.1.0. DataPower Technology.
http://www.datapower.com/xsltmark.

