
Python and Java: The Best of Both Worlds

Jim Hugunin
Corporation for National Research Initiatives

hugunin@cnri.reston.va.us

Abstract

This paper describes a new working implementation of
the Python language; built on top of the Java language
and run-time environment. This is in contrast to the
existing implementation of Python, which has been built
on top of the C language and run-time environment.
Implementing Python in Java has a number of limita-
tions when compared to the current implementation of
Python in C. These include about 1.7X slower perform-
ance, portability limited by Java VM availability, and
lack of compatibility with existing C extension modules.
The advantages of Java over C as an implementation
language include portability of binary executables, ob-
ject-orientation in the implementation language to
match object-orientation in Python, true garbage collec-
tion, run-time exceptions instead of segmentation faults,
and the ability to automatically generate wrapper code
for arbitrary Java libraries.

1. Why Java?

The current implementation of Python in C is a fairly
large and complicated software system. Does Java pro-
vide enough advantages when compared to the current
implementation in C for it to be worth this significant
reimplementation effort? The simplest answer to this
question is that the tidal wave of popularity Java has
been enjoying recently is a good enough reason to be
interested in building a Python system that is 100% pure
Java and can capitalize on Java’s rise to fame. In addi-
tion, Java has a number of significant technical advan-
tages over C, Python’s current implementation lan-
guage. These include portability, object-orientation,
robustness, and scripting language friendliness.

1.1. Portable

Java programs compile down to portable executable
bytecodes that can run on any computer that supports a
Java virtual machine. Unlike ANSI C, which achieves
portability across platforms through recompilation of
source files, Java’s portability is available at the level of
binary executables. This means that Java programs can
be distributed as binary files that will run on any plat-
form. While code written purely in Python currently

enjoys this advantage and will run on any machine with
a Python interpreter installed; the wealth of C-based
Python extension modules, as well as the central Python
interpreter itself, are only portable to multiple platforms
after a (sometimes painful) recompilation of the C
source.

Another important aspect of Java’s portability is the rich
set of portable APIs that SUN is defining for the lan-
guage. They provide standard interfaces for everything
from database access to 3d graphics; and work uni-
formly on any platform that supports Java. More de-
tailed information on these current and planned APIs
can be found at JavaSoft’s web pages [1].

1.2. Object-Oriented

Java is an object-oriented language with the basic fea-
tures of encapsulation, polymorphism, and inheritance.
This makes it a much better fit to Python’s object ori-
ented nature than C. The existing implementations of
Python’s built-in types in C all show the contortions
required to represent classes in a non-object oriented
language. Built-in types can be much more cleanly
represented in Java by taking advantages of the lan-
guage’s own object oriented features.

One of the standard advantages cited for object-oriented
languages is the ability to easily achieve code reuse. I
take advantage of this in my implementation by having
all Python objects inherit from a single PyObject base
class. Furthermore, all of the sequence types (list, tuple,
string) inherit from a single PySequence base class.

The current implementation of Python in C has an un-
fortunate asymmetry between built-in types and Python-
defined classes. One aspect of this asymmetry is that
users cannot write classes that inherit from built-in
types such as lists and dictionaries. Another aspect of
the current asymmetry is that instances of built-in types
don’t have __dict__’s that can be inspected to determine
their attributes and methods. A large part of the reason
for this asymmetry comes from the implementation
difficulties of creating “real” classes in a non-object-
oriented language like C. In my implementation of Py-
thon in Java, it is relatively easy to make this asymme-

try go away by taking advantages of the object-oriented
design of Java for implementing the built-in types.

1.3. Robust

No Java program will ever segmentation fault. Instead
it will throw a catchable runtime exception. This is a
significant improvement over C where uncatchable,
destructive errors occur all too frequently at runtime. It
needs to be said that bugs in the Java VM can still lead
to segmentation faults, but it’s a lot easier to debug a
single VM than all of the libraries and applications
you’ll want to run on top of it. Python programmers are
used to this level of robustness in their Python code.
However, the frequent inclusion of C-based extension
modules in Python leads to these runtime segmentation
faults appearing nonetheless.

A key part of Java’s robustness is its use of true garbage
collection. My Python implementation on top of Java is
able to take advantage of this capability in the underly-
ing language and eliminates the need to maintain refer-
ence counts on Python objects. This makes writing ex-
tension modules significantly easier as there is no
longer a need to keep track of the reference counts on
Python objects. It also provides true garbage collection
to Python code so that circular references no longer lead
to memory leaks.

1.4. Glue Language Friendly

One of Python’s primary uses is as a glue language to
work with existing libraries written in C. The ease with
which users can generate Python wrappers around these
existing C-based libraries is a frequently cited strength
of Python. Nonetheless, these wrappers require a sig-
nificant amount of hand-coding to make the C libraries
available to Python.

Java’s design is friendlier to glue languages than C.
Both Java’s type safety and the existence of a reflection
API make it reasonably easy to automatically generate
wrappers that allow Python programmers to access Java
packages. The ability to do this without any hand-
coding of wrapper modules (as is currently the case in
C) makes it trivial for Python programmers to use any
Java package.

As an example of how Java’s type safety makes it pos-
sible to automatically generate wrappers for a given
function call, consider the following C function decla-
ration:

void foo(int *a, int n);

This function signature has at least three interpretations,
each of which is expressed uniquely in Java. The lack
of pointers in Java, and the fact that all arrays have their
length implicitly included are what make the Java speci-
fication of these signatures unique.

1) A function of a single array of length n (the length is
encoded in the array in Java).

void foo(int a[]);

2) A function of a single int ‘n’ returning a new int ‘a’.

int foo(int n);

3) A function of two ints ‘n’ and ‘a’, returning a new int
in ‘a’.

int foo(int a, int n);

Beyond this clear model of what any Java type repre-
sents, Java also provides a reflection API to allow glue
languages to discover all of the methods and fields im-
plemented by a given class and to dynamically access
them at runtime.

2. Implementing Python in/on Java

My implementation of Python in Java consists of three
key components. The first is a parser and lexer for the
Python grammar. These are pure Java code generated
by the JavaCC parser generator [2] freely available
from Sun. They are similar to Python’s C-code parser
and lexer. When run on a Python source file the parser
generates a collection of Java objects representing the
parser tree.

The second component of the system is a compiler
written entirely in Python that traverses this parse tree
to output actual Java bytecodes. (Notice that I’m al-
ready taking advantage of the power of this system here
as I use a compiler written in Python to traverse a parse
tree consisting of Java objects produced by a Java-based
parser). This is different from the current Python im-
plementation, which outputs its own private bytecode
format. By producing Java bytecodes, I’m coming
closer to what in the C-world would be accomplished by
directly generating machine code. But this is a portable
machine code that will run on any Java platform.

The third component of my implementation of Python
in Java is a collection of Java-based support classes.
These classes provide the implementations for the basic
Python objects (lists, integers, instances, classes, …) as
well as implementations of handy functions like “print”
and “import”. The functionality of Python’s current

virtual machine is split between these support classes
and Java’s own virtual machine.

2.1. Compiling Python to Java Bytecodes

Both the Python and Java languages compile to a port-
able bytecode format. The virtual machines for both of
these languages are stack-based. Stack-based architec-
tures seem to be the norm for virtual machines, while
most native microprocessors are instead register-based
machines. Unlike the Python virtual machine which
was designed purely for running Python code, the Java
VM was built to be able to run code from a wide variety
of languages. I am aware of compiler projects (in vari-
ous stages of completion) for Scheme, TCL, BASIC,
Rexx, Python (described in this paper), ADA and C that
target the Java VM.

Let’s take a look at how a very simple expression is
currently compiled to Python bytecodes by the Python
compiler. To keep things as simple as possible, we’ll
consider the expression “2+2”.

Python Bytecodes for 2+2
0 LOAD_CONST 0 (2)
3 LOAD_CONST 0 (2)
6 BINARY_ADD

This simple expression generates three Python byte-
codes. The first two load the Python integer object “2”
on to the operand stack. The final opcode adds the top
two elements on the stack together. It does this using
Python’s conventions for dynamic method invocation.

The Java bytecodes for this same operation look sur-
prisingly similar:

Java Bytecodes for 2+2
0 iconst_2
1 iconst_2
2 iadd

The first two opcodes push the integer “2” on to the
operand stack, and the third opcode adds the top two
operands together.

Despite the apparent similarities between these two bits
of assembly code, the underlying mechanics are in fact
quite different. The Java machine is working on literal
integer values. It actually pushes the 32-bit binary
value 0x00000002 on to the stack to represent the inte-
ger 2. The Python code, on the other hand, is manipu-
lating Python integer objects. What it pushes on to the
stack is not a raw integer literal, but a pointer to a corre-
sponding integer object.

Furthermore, Python’s BINARY_ADD opcode is very
different from Java’s iadd. The Python opcode dynami-
cally invokes the appropriate code to add the top two
objects on the stack together based on their run-time
types. The Java opcode on the other hand requires that
its two operands are literal 32-bit integers. This differ-
ence captures much of the inherent differences between
Python’s highly interactive/dynamic nature, and Java’s
static but high-performance design.

Despite these deep underlying differences, the Java VM
has facilities to implement Python’s dynamic model
with minimal overhead. While Java’s integers are inap-
propriate for representing Python’s integers, Java ob-
jects can readily represent Python integers (and all other
Python objects). And while Java’s built-in add methods
can not implement Python’s dynamic method lookup,
Java method invocation can be used to achieve the same
effects. Making these changes, we see how the Python
semantics for “2+2” can be compiled to Java bytecodes.

Java Bytecodes for 2+2 with Python’s Semantics
0 getstatic #1 // static field _i2
3 getstatic #1 // static field _i2
5 invokevirtual #2

 // PyObject.add(LPyObject;)LPyObject;

This implementation will push a Java object corre-
sponding to the Python integer “2” on to the top of the
stack, and then do that again. The third opcode will
invoke the add method on the top object on the stack,
and it’s the responsibility of this method to implement
Python’s “add” semantics.

2.2. Java Class Hierarchy for Python Types

In order to make the above bytecodes work, all of the
built-in Python types must be implemented as Java
classes. The Java class hierarchy to implement the core
Python types is shown below.

À java.lang.Object
À PyObject

À PyInteger
À PyString
À ...
À PyDictionary
À PySequence

À PyList
À PyTuple

À PyClass
À PyInstance
À PyFrame

The names of the classes should be familiar to anybody
who has worked with Python’s existing internals. It’s

unfortunate that these names use the “Py” prefix that’s
so necessary in Python’s C implementation. Java has
very nice namespace management (similar to the pack-
age namespaces provided in Python 1.5). Unfortu-
nately, every Java program automatically imports the
“java.lang” namespace. This means that the names
“Object”, “Class”, and “Integer” are already taken in
any Java program.

The PyObject class implements all of the basic func-
tionality of Python’s dynamic method invocations. This
is very similar to Python’s existing semantics, though it
is simplified because of increased similarities between
built-in types and Python defined classes.

2.3. A More Complicated Example

The actual implementation of my Python to Java byte-
code translator performs a direct translation from Py-
thon to Java bytecodes. Nonetheless, almost all of what
it does can be viewed conceptually as a translation of
Python to Java. Since it tends to be easier to read Java
source code than Java VM assembly code, I’ll present
the next few examples that way. The translation from
Java source code to Java bytecodes is generally fairly
straightforward. Remember that the following exam-
ples of Java source code are for illustrative purposes
only. My Python in Java system never generates Java
source files, but only executable Java bytecodes.

I’m going to show how a very simple Python module is
conceptually translated to a Java module. Table 1
shows both the code for the Python module and the Java
source that corresponds to the Java bytecodes my com-
piler actually generates.

Line 1 declares a new Java class. Every Python module
is implemented as exactly one Java class. Each Python
module must also implement the interface PyRunnable
which allows the module to be initialized (and requires
the module to implement the “run” method as shown
here).

Lines 3-6 define the constant pool for this Python mod-
ule as static fields on the Java class. Each of these static
fields holds a Java object which corresponds to some
primitive Python constant.

Lines 7-18 define the single method of this Java class.
This is the method that is invoked when the module
“foo” is imported under Python. This method receives a
PyFrame object corresponding to the Python stack
frame in which the module should execute. This object
is used to hold all Python local and global variables (no
effort has been made to take advantage of Java’s local

variables as they have sufficiently different semantics
than Python’s dynamic counterparts as to make this
difficult).

Line 9 shows how this frame object is used to execute
simple variable assignment. The local variable whose
name corresponds to the python string “x” is assigned to
the Python integer constant 2.

Line 11 shows a slightly more interesting example.
Here, the lookup of the local variable x should be obvi-
ous. It is added to the Python constant integer 2 using
its add method. This “add” method is implemented in
PyObject and handles Python’s dynamic method invo-
cation semantics. Notice also that the Java VM’s exe-
cution stack is being used to keep track of the operands
in this add operation; and furthermore, the Java VM’s
garbage collection is being held responsible for han-
dling memory management so that no reference count
management is needed.

Line 13 is a simple import statement. All of the inter-
esting work is hidden here in the implementation of
Py.importModule(). I don’t want to go into the details
of this here, I am just using it as a convenient device to
get an object into my name space for which I can get
and set attributes.

Line 15 is an example of setting an attribute on an ob-
ject. Those familiar with Python’s “__” special meth-
ods should recognize the “__setattr__” method immedi-
ately. This method works just like the Python version
except that it operates on Java objects (some of which
might represent PyInstance objects).

Finally, line 17 prints out the attribute that has just been
set. Once again, “__getattr__” works just like the corre-
sponding Python special method.

2.4. An Example With Function Definition

As one final example, I will show how a simple Python
module that defines a new Python function can be con-
verted to Java. This example is somewhat complicated
because I have tried to make it complete. If you’re not
really interested in the low level details of how Python
in Java is implemented, I’d highly recommend skiping
this example. The original Python source for this mod-
ule, as well as its theoretical translation to Java source
are shown in Table 2.

Line 1 declares the “doubleit” Java class corresponding
to the Python module just as in the previous example.
In addition to the PyRunnable interface which was de-

Table 1. Translation of a simple Python module to Java

Python code for module: “foo.py”

x = 2
print x+2

import spam
spam.eggs = 2
print spam.eggs

Java source corresponding to Java bytecodes which my compiler actually generates: “foo.java”

1 public class foo implements PyRunnable {
2 //Declare fields for constants
3 static PyInteger _i2 = new PyInteger(2);
4 static PyString _sx = new PyString(“x”);
5 static PyString _sspam = new PyString(“spam”);
6 static PyString _seggs = new PyString(“eggs”);

7 public void run(PyFrame frame) {
8 //x = 2
9 frame.setlocal(_sx, _i2);

10 //print x+2
11 Py.print(frame.getlocal(_sx).add(_i2), true);

12 //import spam
13 frame.setlocal(_sspam, Py.importModule(_sspam));

14 //spam.eggs = 2
15 frame.getlocal(_sspam).__setattr__(_seggs, _i2);

16 //print spam.eggs
17 Py.print(frame.getlocal(_sspam).__getattr__(_seggs));
18 }
19 }

scribed previously, this class also supports the PyFunc-
tionTable interface which is used to support Python
defined functions. More details on how this is accom-
plished are described below.

Lines 3-6 define the constant pool for this module just
as in the previous example.

Lines 7-11 are used to add a Python code object to the
constant pool. The arguments passed to this new code
object are (in order): number of arguments, an array of
variable names (including arguments), the filename of
the module which defines this code, the name of the
code, whether the code supports *args, whether it sup-
ports **keywords, an object that can be used to lookup

the actual code to be invoked, and an integer index to be
passed to that object to indicate which function to actu-
ally call. The details of these last two parameters will
be explained later.

Lines 12-15 define the actual Java code to be invoked
for the “double” Python function. This function will be
called when the _xdouble code object is called. Line 14
shows a small optimization in this code that is equiva-
lent to Python’s FAST_LOCALS optimization. The
local variable “x” in this function is looked up by a nu-
meric index into the frame variable table rather than by
name. This optimization offers a significant speedup
for local variable references in both Python in C and my
own Python in Java.

Table 2. Translation of a Python module containing a function definition to Java

Python code for module: “doubleit.py”

def double(x):
return x*2

print double(2)

Java source corresponding to Java bytecodes which compiler actually generates: “doubleit.java”

1 public class doubleit implements PyRunnable, PyFunctionTable {
2 //Declare fields for constants
3 static PyInteger _i2 = new PyInteger(2);
4 static PyString filename = new PyString(“doubleit.py”);
5 static PyString _sx = new PyString(“x”);
6 static PyString _sdouble = new PyString(“double”);

7 static PyFunctionTable table = new doubleit();
8 static PyCode xdouble = new PyTableCode(1, new PyString[] {_x},
9 false, false,
10 filename, _sdouble,
11 table, 0);

12 public PyObject _fdouble(PyFrame frame) {
13 // return x*2
14 return frame.getlocal(0).multiply(_i2);
15 }

16 public PyObject call_function(int index, PyFrame frame) {
17 switch (index) {
18 case 0:
19 return _fdouble(frame);
20 default:
21 throw new PyInternalError(“Illegal function referenced”);
22 }
23 }

24 public void run(PyFrame frame) {
25 //def double(x):
26 frame.setlocal(_sdouble, new PyFunction(frame.f_globals,
27 Py.EmptyObjects,
28 _xdouble));

29 //print double(2)
30 Py.print(frame.getlocal(_sdouble).__call__(new PyObject[]{_i2}));
31 }
32 }

Lines 16-23 define the required method for the PyFunc-
tionTable interface. The goal of this method (and this
interface) is to fake the effects that are typically realized
in C using pointers to functions. The PyRunnable inter-
face is the simplest solution to the problem that Java
does not allow references to function to be passed
around. Any class that implements this interface can be
passed around and used as a function pointer to the
“run” method contained by that class. Instead of using
the PyFunctionTable interface, I could instead generate
a new Java class file for every function pointer that I
wanted, but this is very wasteful of space. Using the
PyFunctionTable interface, each module contains meth-
ods for every code object that it contains. It also con-
tains this “call_function” method that will lookup the
appropriate function to call based on an integer index.
This allows a single Java class to support as many Py-
thon code objects as desired.

Finally, lines 24-31 define the run method that is used to
invoke the top-level code in this module. This is
equivalent to the same method as in the previous exam-
ple.

Line 26 creates a new Python function object which is
initialized with the current globals dictionary, no default
arguments, and the appropriate Python code object from
the constant pool.

Finally, line 30 prints out the result of calling this new
function object with the single Python integer 2. The
arguments to the function call are passed as a Java array
of PyObjects. This allows the function to be called with
an arbitrary number of arguments despite the fact that
Java doesn’t support anything like Python’s “*args”.

3. Integration of Python and Java

Compiling Python to Java bytecodes is only a part of the
picture for making Python and Java work together.

What is also needed are seamless mechanisms to allow
Python code to use Java libraries (see related work by
Kevin Butler [5] and Douglas Cunningham [4]) and to
allow Python code to be called from Java (I think this is
going to be really hard to achieve with any generality in
the other two approaches to embedding Java in Python).

Applets provide a good example of where this sort of
seamless bi-directional integration is required. In Table
3 I show the Python source code for a simple wokring
“Hello World” applet. It will run in any web browser
that supports JDK1.1. At the moment this includes
SUN’s HotJava browser, and patched versions of Inter-
net Explorer 3.1 and Netscape Navigator 4.0. Before
the end of 1997 all major web browsers should support
JDK 1.1 without patches.

This example shows how Python classes can create in-
stances of Java classes, and invoke methods on these
instances. It also shows how a Python class can sub-
class from a Java class and override specific methods.

Line 1 imports the “java” package. This package is the
root of the standard Java class hierarchy. If I didn’t
want to use fully qualified names, I could have written
things like “from java.applet import Applet” instead.
The new support for packages in Python 1.5 makes it so
that this syntax and semantics for importing Java pack-
ages is virtually equivalent to that used for Python
packages.

Line 2 creates a new Python class “HelloApplet” which
subclasses the Java class, “java.applet.Applet”. The
ability of Python classes to subclass Java classes is a
key part of the seamless integration of the two lan-
guages. This also means that Python in Java code can
subclass from any built-in class including Python lists
and dictionaries (no more UserList.py).

Table 3. A simple “Java” applet implemented in Python

1 import java

2 class HelloApplet(java.applet.Applet):
3 def paint(self, g):
4 g.setColor(java.awt.Color.black)
5 g.fill3DRect(5,5,590,100,0)
6 g.setFont(java.awt.Font("Arial", 0, 80))
7 g.setColor(java.awt.Color.magenta)
8 g.drawString("Hello World", 90, 80)

Line 3 implements the “paint” method for this applet
object. This overrides the standard implementation of
this method in the Java superclass. It accepts a single
argument (other than itself) which is a Java graphics
object.

Lines 4-8 invoke various methods on this graphic object
in order to draw a huge garish magenta on black “Hello
World” within the browser where it is running. All of
the methods called here are Java methods, implemented
in the java.awt package. In line 5, one is called with a
Java object corresponding to the color black. In line 6,
the “fill3DRect” method is called with five Python inte-
gers. These Python Objects are coerced to the appro-
priate Java primitive integers when making the call.

Line 6 shows the creation of a new instance of the
java.awt.Font class. The syntax for instance creation is
exactly like that used when creating a new instance of a
Python class. The Python objects which are the argu-
ments are appropriately coerced to Java objects or
primitives when the class is actually instantiated.

4. Separation of Python and Java VM’s

By choosing to implement Python in Java by running
Java bytecodes directly on top of the Java virtual ma-
chine, I am able to utilize the machinery of the Java VM
to handle many tasks that the current Python VM in C
must deal with itself.

The Java VM takes care of memory management using
a true garbage collection scheme. This means that there
is no need to deal with reference counting at run-time
for code that is implemented in Python or Java.

The Java VM handles the immediate operation stack.
This means that I don’t need to worry about managing a
stack of intermediate results. It also handles multi-
threading.

Finally, the Java VM deals with much of the problem of
exception handling. Every try/except clause in Python
is implemented as a try/catch clause at the level of the
Java VM. The one great limitation is that the Java ma-
chinery must trap all exceptions and then subsequent
support code is used to determine the actual type of the
Python exception thrown and invoke the appropriate
except clause, or reraise the exception to the next stack
frame.

There are a number of additional function performed by
the standard Python VM that do not map nicely onto the
Java VM. These functions are implemented by Java

support code that is a key part of my Python in Java
system.

As mentioned above, part of this support code is needed
for handling specific Python exceptions. It also in-
cludes support code for dynamic method invocation.

Finally, this support code must manage a separate Py-
thon call frame stack. A key part of managing the call
frame stack is handling local and global variable access.
This is also done in the support code. It is unfortunate
that the Java VM’s ability to manipulate local variables
can’t be used here instead. There seem to be a small
number of unresolved issues related to the very dynamic
nature of namespaces in Python that make it much eas-
ier to just implement my own local variables.

5. Current Status of Implementation

I can compile reasonably complicated Python modules
directly to Java bytecodes. The resulting code runs
about half as fast as under the standard Python 1.4 in C
distribution. In addition, the Java “.class” file is about
twice as large as the corresponding Python “.pyc” file.
On the pystone benchmark found in the standard Python
distribution, I found that my Python in Java implemen-
tation obtains 941 PyStones running on a 200MHz Pen-
tiumPro under Windows NT 4.0. The standard Python
1.4 implementation in C obtains 1595 PyStones running
on the same machine under the same operating system.
The Python in Java implementation is about 1.7 times
slower than the standard Python in C. I timed the Java
implementation running under Microsoft’s second beta
release of their JDK1.1 compliant virtual machine with
JIT compilation enabled. This is the fastest Java VM
that I could find at the time of writing this paper.

6. Conclusions
6.1. Python in Java’s Disadvantages

My new implementation of Python in Java has a number
of disadvantages when compared to the existing Python
in C system. Some of these are the frequently cited
disadvantages of Java vs. C. It is not compatible with
existing Python modules that have been written in C.
Java’s portability is great, but there are still a number of
platforms where it is either not supported at all, or only
supported poorly. Finally, this system is slower than the
current C-based implementation (by a factor of 1.7).

The portability and speed problems are likely to go
away as people continue to work on improving the Java
runtime systems. As anecdotal evidence, the first Java
VM that I used for my experiments in April 1997 is

about 2.5 times slower than the Java VM I’m using to-
day (September 1997). As far as portability is con-
cerned, the Kaffe project [5] provides a free portable
implementation of the Java VM that is relatively easy to
get running on a wide variety of platforms.

The problem of backwards compatibility is more diffi-
cult to address. Personally, I feel that Python in Java
has enough advantages for module writers (garbage
collection, true exceptions, object-orientation, portable
binaries, …) that they will be happy to reimplement
their systems. Whether this is true or not remains to be
seen.

6.2. Python in Java’s Advantages

Using Java as the underlying systems language for Py-
thon has a number of advantages over the current im-
plementation of Python in C. First and foremost of
these in my mind is the opportunity to ride the Java
popularity wave and let Python code run everywhere
there’s a Java VM. It also makes the rich set of portable
Java API’s available from within Python.

There is also a nice collection of technical reasons why
Java is a superior implementation language for Python
than C. These include Java’s binary portability, thread-
safety, object-orientation, true exceptions, garbage col-
lection, and friendliness to glue languages. More ques-
tions need to be answered before I can make a con-
vincing argument that Python 2.0 should be imple-
mented in Java rather than C. Nonetheless, I think that
Java offers many advantages for Python as both an im-
plementation language and a widely available run-time
platform.

7. References

[1] Java API Overview and Schedule; JavaSoft;
http://www.javasoft.com/products/api-overview.

[2] Java Compiler Compiler (JavaCC); Sriram Sankar,
Sreenivasa Viswanadha, Rob Duncan;
http://www.suntest.com/JavaCC/.

[3] PyJava: Java Embedded in Python; Kevin Butler;
http://students.cs.byu.edu/~butler/jni/PyJava.html.

[4] Java Python Interface (JPI); Douglas Cunningham;
http://www.ndim.edrc.cmu.edu/dougc/jpi/.

[5] Kaffe: A free virtual machine to run Java code;
Tim Wilkinson; http://www.kaffe.org.

