
Using AspectJ for Component Integration in Middleware
Adrian Colyer, Andy Clement

IBM UK Limited
Hursley Park

Winchester, England
+44 1962 810000

{colyer,clemas}@uk.ibm.com

Ron Bodkin
New Aspects of Securityi

216 27th Street
San Francisco, CA 94131

+1 415-509-2895

rbodkin@newaspects.com

Jim Hugunin
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94303

+1 650-812-5000

hugunin@parc.com

ABSTRACT
This report discusses experiences applying AspectJ [1] to
modularize crosscutting concerns in a middleware product line
at IBM®. Aspect oriented programming techniques were used
to cleanly separate platform specific facilities for aspects such
as error handling, performance monitoring and logging from
base components, permitting those components to be reused in
multiple environments. The initiative also guided the design of
the AspectJ Development Tools (AJDT) for Eclipse, and
influenced the technical direction of the AspectJ
implementation

Keywords
Aspect-orientation, AspectJ, middleware.

1. INTRODUCTION
In March of 2002 a project team consisting of three consultants
from PARC and six IBM employees undertook a study to
investigate the potential for separating crosscutting concerns
from middleware components. The concerns investigated were
chosen both because they represented classic early use cases for
AOP [2] (and hence were a good test to see if the claims for
AOP could stand up in a real code base, as opposed to an
educational example), and because project success would solve
a real business need. This report describes the initial
experiences from that project, and the subsequent development
of the ideas and tools in the 18 months since then.

The business motivation for using AspectJ was to target
multiple runtime environments with a single source code base.
The IBM team was releasing certain components under an open
source license, such that they could be used in open source
environments. However, the same components were also used
in an IBM middleware product line where it was important to
continue to take advantage of improved platform-specific
facilities. Putting IBM proprietary features into the open source
code base was unacceptable both to IBM and to the open source

community. Because of the pervasive nature of the concerns
addressed, maintaining dual code bases would have been time
consuming and error prone.

The most important concerns addressed were tracing and
logging, event reporting, error handling, and performance
monitoring. Figure 1 gives an indication of the pervasiveness of
these concerns in the middleware product line. It presents an
analysis of some of the components in the product line,
showing how many other components directly depend on them.
Existing IBM policy documents in each of these areas were
interpreted and embodied in aspects with no concessions made
to make the task easier. The team also assessed the
organizational and architectural impacts of the aspect based
solution, and the ability of the AspectJ tools to scale to an
industrial setting.

The initial process involved two weeks of remote collaboration,
including code reviews, preliminary design, and other
preparation. This was followed by an intense week of hands on
training and workshops that accomplished the following:

o A review of the design of the pilot components
o Analysis of the specific concerns under study
o Interactive design of new aspects to address those

concerns
o Rapid prototyping of a solution, modifying

production code using AspectJ 1.0.3
o Integration of the AspectJ tool set into production

build processes
o Integration of prototype code into a deployable

format
o Analysis of findings

At the time the study was initiated, four out of six of the IBM
employees had no prior experience with AspectJ.

2. IMPLEMENTATION
This section describes how aspects were used to address the
various concerns, together with an assessment of the benefits
and drawbacks of the AspectJ based solution.

2.1 Tracing and Logging
All components in the product line have extensive logging
requirements. The product architecture team defines a detailed
policy (about a fifty page document), which has been revised
with each major release of the application. There are two major
applications of logging: for tracing method entries and exits,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright is held by the author/owner(s).
OOPSLA’03, October 26–30, 2003, Anaheim, California, USA.
ACM 1-58113-751-6/03/0010.

and for recording system events. Error handling also performs a
type of logging, but that is handled through a separate
infrastructure (and is further described in section 2.2).

The tracing policy was implemented using an abstract aspect
that captured the policy, and concrete sub-aspects that defined
the scope of policy application. The single abstract aspect
defined both when and how tracing was to be performed. It also
ensured that all calls to tracing were “guarded” with a check
that determined whether tracing is enabled. One concrete sub-
aspect was defined for each component to be traced in the
product-line. This division of responsibility allows the
architects to both set and implement a global policy, whilst
component owners decide how that policy should be applied
within their domain. A typical component aspect provides a
concrete definition of a scope pointcut indicating where the
trace policy should be applied within the component, and also a
set of inter-type declarations for toTraceString() methods that
override default logging output where necessary.

We were able to successfully implement the tracing policy
using AspectJ. Furthermore, considering the accuracy and
completeness of the implementation, the aspect-based solution
compared favourably to the traditional scattered
implementation of inserting trace calls into every class. In
creating the prototype, the team found several examples where
tracing was not implemented completely, other cases where
there was inconsistency and ambiguity in interpreting the
policy, and some places where tracing calls were not correctly
guarded with checks on whether tracing was enabled. These
last policy violations can cause runtime performance overhead
when running in production (by making calls that create strings
needlessly). In subsequent work with aspect implementations of
policy we have found this experience to be entirely typical –
specifying and implementing the policy directly in an aspect
gives a more complete and accurate implementation. The larger
the development team (and hence the greater the degree of
separation between the team specifying the policy and the
developers who would have to implement it in a traditional
manner), the greater the benefit of the aspect approach.

A further benefit of the aspect approach that has been
subsequently exploited is the ease with which the tracing
implementation can be updated or replaced. We have
implemented tracing policies using the product-line internal
interfaces, Log4j [3], and Jakarta Commons Logging [4].
Switching implementation is a simple build time decision of
which implementation aspect to include. Clearly, the larger the
code-base, the greater the cost of switching or updating a
traditional scattered implementation - and therefore the greater
the benefit of an aspect-based solution.

Our initial implementation of the tracing concern was based on
AspectJ v1.03 and exposed the importance of optimized
performance. We were concerned that the aspect based solution
may impose an estimated performance overhead of up to 5%.
The cause for this concern was the eager creation of
‘thisJoinPoint’ objects for advice that referenced
‘thisJoinPoint’ in the advice body, even if dynamically the
‘thisJoinPoint’ variable would never be accessed (tracing was
turned off by a flag for example). We subsequently ran some
performance tests with AspectJ 1.1, and measured the overhead
in the case where tracing is disabled (the performance sensitive
case) and advice does not use ‘thisJoinPoint’, at 1% or below.
When advice does use ‘thisJoinPoint’ the overhead caused by
the additional object creations and also garbage collection can
be significant, depending on the profile of the application. The
lazy creation of ‘thisJoinPoint’ objects is a candidate item for
the AspectJ 1.2 release and will resolve this issue fully. Also
bear in mind that a truer comparison of aspect-based and
scattered implementations should take into account that not
every developer will faithfully follow all of the performance
guidelines when implementing tracing by hand. Since the
aspect implementation can be carefully optimized and then
applied consistently everywhere, the overall system
performance, even if not as high as the perfect scattered
implementation, can still be very competitive. With an
optimized AspectJ compiler implementation, the aspect-based
solution may well exhibit better performance than the scattered
solution you would expect to find in a typical code base.

0

10

20

30

40

50

60

 Components

Dependents

Tracing &
logging

performance
monitoring

Failure detection
and analysis

Figure 1. Most frequently used components

The default tracing facility used by the middleware product line
required classes to register once with the tracing facility, and to
use a returned object for all future tracing. This registration is
done during static initialization of the class. By convention, the
name used for identifying this tracing is the name of the class.
However, AspectJ did not support any means of identifying the
class in which a static method is executing. This support would
be important for statically initializing tracing for many classes
from the same aspect. The current version of AspectJ (v1.1)
does not support inter-type declarations of static members
across multiple classes. The proposed ‘pertype’ language
extension [5] will resolve this issue. These issues have been
partially resolved on subsequent projects by tailoring the
tracing policy to better match AspectJ’s capabilities (by
registering at the component, rather than class level). An
alternative implementation could use HashMaps, but this
solution has performance implications.

Systematic logging for capturing events was prototyped with
good results. In this case, an aspect was created for each
component that defined pointcuts for the events to be logged. In
some cases, this required minor refactoring of the code to
expose a joinpoint of interest. In general we have found that a
refactoring required to facilitate an aspect-oriented approach to
some concern improves the quality of the code independently of
the support for the concern in question. A corollary to this is
that the better the object-oriented design of the application, the
easier it is to introduce aspect-orientation.

We anticipate that the aspect-oriented approach to tracing and
event logging will make the serviceability reviews that IBM
holds prior to product shipment easier: the tracing policy and
set of logged events are captured explicitly for review. A
concern with event logging though (as opposed to general
tracing that tends to use robust property-based pointcuts) was
the potential fragility of the event pointcuts in the face of
program maintenance by development prior to shipment, or
service afterwards. If code is refactored, this has the potential
to cause the event pointcuts to no longer match as intended.
One approach to mitigating this concern is using the AspectJ
development tools such as AJDT that visually show where
advice applies to given code. Another could be to extend
AspectJ to allow declaring warnings or errors if the events are
no longer present (i.e., the pointcuts are empty). A longer-term
solution is to integrate pointcut definitions into refactoring
tools, and rely on these tools to correctly refactor all elements
of a program. The infrastructure needed to support this
approach is now being developed as part of the Eclipse 3.0
release, and the AJDT project plans to exploit this to allow
aspect-aware refactoring [6].

A final significant benefit of applying AspectJ to tracing and
logging came from writing an aspect that policed improper
usage: it generated compile-time errors when the user wrote
results to System.out or System.err, or code that otherwise used
the logging facility improperly. This policing aspect found
several policy violations in one of the components. We have
subsequently significantly extended our use of development-
time policy enforcement aspects within the product-line.

2.2 Error Handling
The product line uses a sophisticated error analysis and
reporting subsystem following the principle of “first-failure
data capture” (FFDC). In essence FFDC seeks to ensure that all
pertinent information relating to a failure is captured as close to
the source of the error as possible. This information is then
passed into a diagnostics and analysis component for logging
and execution of any recovery actions.

When the FFDC capability was first introduced into large
portions of the product-line a hand-built tool was used that
rewrote source code. Another tool was created and maintained
to test for violations of policy (including checking for comments
to indicate that an exception should not be reported). New code
needs to be manually instrumented. The tool has limited
flexibility, and automates the process only for the initial
introduction of error handling logic. However, the pain of
handling the crosscutting error handling concern accurately
made it better to introduce special purpose tools than try to
enforce coding discipline without tools.

By contrast, it was easy and effective to implement the error
handling policy in AspectJ. An abstract aspect was again
developed to codify the error handling policy. This captured the
points where errors were detected (in exception handlers and in
method returns), and passed the exception details and context
information into the FFDC analysis engine. In addition to the
abstract aspect, the prototype included one concrete sub-aspect
for each component following the same principle as that
outlined for tracing and logging. Here the component aspects
also needed to define any exceptions that should not be dealt
with by error handling.

There was initially concern about pointcut fragility in
determining where exceptions were being handled that
shouldn’t be passed to the error analysis and reporting
subsystem. However, close analysis showed that there was
always a principle behind which exceptions and in which
context exceptions weren’t analyzed and reported. So the
pointcuts that excluded handling certain errors dealt mostly
with classes of exception and domain classes, and did not need
to enumerate lists of methods or combinations of methods and
exceptions.

An example of a common case that needed to be excluded from
the exception handling logic was all calls to
‘Class.forName(xxx)’. This method throws a
‘ClassNotFoundException’ to indicate a missing class. Every
time this method was used in the code base the exception was
treated as a normal return value and handled at the call site.
The reusable aspect was able to capture this pattern in a
general way and remove the need to hand-label each call-site
which the current hand-built tool requires.

The AspectJ solution was not only consistent in applying policy
and making it explicit, but it also made it easier to change the
policy in the future. Subsequent work has extended the set of
FFDC capabilities handled by the aspect implementation. We
have used aspects to implement and register component
diagnostic modules that can provide component state
information to the FFDC analysis engine on request. We have
also prototyped an aspect approach to capturing important

Figure 2. Visualization of the Impact of the FFDC Aspect

transient data not available on the call-stack and making that
available to the FFDC engine in the case of failure too.

Figure 2 illustrates the impact of the FFDC policy as
implemented in AspectJ for one of the components in the
product-line. Each bar in the view represents a source file in
the component. Every red line represents a place where the
types defined in the source file are advised by the FFDC aspect.

This visualization capability is part of the AspectJ
Development Tools (AJDT) for Eclipse developed subsequently
to the original prototyping work. We have since found it to be
very effective in persuading developers of the power of the
aspect-based solution.

2.3 Performance Monitoring
This product-line is extensively instrumented to capture
performance information (monitoring and statistics data).
Components provide a class with stylized interfaces to access
performance statistics for the component. We initially analyzed
the existing implementation of performance monitoring data
collection in a significant component of the product line. We
found that data gathering was scattered across ten classes in the
component, and by considering the data collection as a concern
in its own right were able to uncover subtle inconsistencies in
where information was collected.

We then implemented the performance instrumentation concern
for the component in a single aspect that applied a consistent
policy for capturing the performance statistics. The team was
especially pleased with the aspect implementation of this
concern, since each statistic to be gathered mapped neatly into
a single pointcut definition, making the code look just like the
design document! Moreover, the original code had to manage
state in multiple places just to count correctly. In contrast, the

AspectJ version was able to centralize this logic and
disentangle it from the core component logic.

We were easily able to generalize the approach for a second
component with comparable convenience and further reduced
effort. Figure 3 shows the impact of the performance
monitoring aspect for this component. The view has been
limited to show only affected classes – which are a small subset
of the total for the component. Overall, statistics collection for
performance monitoring was significantly improved by using
AspectJ.

2.4 Impact on Program Comprehension
A common question that comes up when discussing aspect-
oriented programs is that of program comprehension. Isn’t it
harder to understand what’s going on in the system when
multiple aspects are in place? Our experience was to the
contrary; the aspect solution improved overall program
understanding by making the cross-cutting policies explicit, and
by removing tangling (noise) from other routines so that their
intended function could be more readily seen. The following
example illustrates this effect on a selected source extract.

01 try {
02 if (!removed)
03 entityBean.ejbPassivate();
04 setState(POOLED);
05 } catch (RemoteException ex) {
06 FFDCFilter.processException(

07 ex,”EntityBeanO.passivate()”,

08 “237”,this);
09 destroy();
10 throw ex;

11 } finally {
12 if (!removed && pmiBean != null)
13 pmiBean.beanPassivated();
14 removed = false;
15 beanPool.put(this);
16 if (EJSDebug.EJSDEBUG)

17 Tr.exit(tc, “passivate”);
18 }

Lines 06-08, 12-13, and 16-18 are all arising from tangled
concerns. The sample below shows the same extract, but this
time with the crosscutting concerns refactored into aspects.

01 try {
02 if (!removed)
03 entityBean.ejbPassivate();
04 setState(POOLED);
05 } catch (RemoteException ex){
06 destroy();
07 throw ex;
08 } finally {
09 removed = false;
10 beanPool.put(this);
11 }

2.5 Additional Concerns
During the workshop the team also did preliminary prototyping
and achieved good results in separating the definition of
business events from source code. This was fairly analogous to
defining events for logging purposes (as described in section
2.1). However, the pointcuts used were also able to support
events in customer (3rd party)-written code by supporting a
naming pattern (or customer defined pointcuts).

Subsequent work has used aspects to instrument components
for management via JMX™ . The aspects permit the addition of
management operations to an existing class, and adaptation of
fields and methods for management. An investigation into the
use of aspects for profiling has reported on in [7].In addition to
these very homogenous concerns, the IBM team has also
investigated the use of AOSD to refactor large scale
heterogeneous concerns in the product line, and this work will
be reported on separately.

AspectJ was helpful as a debugging tool throughout the
prototyping effort. In addition, one attendee of the training
tutorial who was not part of the prototyping effort immediately
applied AspectJ to debugging a distributed system. The aspect
reduced the time required to solve the problem because it did
not require invasive modification of code to identify what was
wrong.

3. TOOLS INTEGRATION AND
ASSESSMENT
This section discusses how adding AspectJ to the existing
system affected integration with the project’s development
tools and process, and how the AspectJ tools themselves stood
up to the test.

Figure 3. Implementation of Performance Monitoring
Concern

The project team already had a very heterogeneous set of tools
(including almost as many favored editing environments as
there were people prototyping). Most developers on the team
preferred to use command-line compilation. The combination of
Eclipse integration, emacs integration, and the stand-alone
browser tool supported everyone’s preferred development
approach. (Subsequent to the initial workshop, there has been a
significant migration to Eclipse-based tools). The team initially
worked with an alpha version of the AJDT toolkit for Eclipse.
This was helpful for understanding the effect of crosscutting
declarations, but was hard to use because it was not yet a
mature tool. The current release of AJDT is a vast improvement
on that early tool, and the IBM team now uses it on a daily
basis for their work.

The AspectJ 1.03 compiler worked quite well on the code base:
it was easy to compile existing code, add aspects to it, and to
test it. The product-line uses a sophisticated set of ant scripts,
including a custom ant task for compilation, and maintains
separate files that define the classes in each component.
However, in about one person day of effort the team was able to
integrate AspectJ compilation into the process completely.

The biggest drawback in the resulting build process resulted
from how it handled reusable aspects in multiple components.
AspectJ 1.0 did not provide a means for packaging a reusable
library of aspects, so reusable aspects needed to be included as
source in the definition of each component to which they
applied. AspectJ 1.1 addresses this issue by allowing aspect
libraries to be built and by supporting binary weaving. A
secondary issue was the compilation time, both in batch builds
and within the IDE. Part of this was attributed to the batch
compiler implementation, and part to the lack of incremental
compilation for AspectJ, which made compilation during
development feel slow, though it still remained tolerable.
Incremental compilation was addressed in AspectJ 1.1 and is
now supported by AJDT. AspectJ 1.1 also switched the
compiler implementation to be based on the Eclipse JDT
compiler. Our latest measurements with the AspectJ 1.1 release
indicate that compilation is now quicker than with the standard
javac compiler (a benchmark compile of nearly 3,000 classes
showed that ajc gave a 10.5% reduction in compile time over
javac). We have also found the AspectJ 1.1 compiler
implementation to be very robust, having test compiled almost
20,000 source files from the middleware product line and found

only two bugs (both now fixed). The ant support in AspectJ
has also improved, and we have trivially integrated the AspectJ
1.1 compiler into the build process of other products in the
family.

During the week of prototyping, the team had a good
opportunity to assess the quality of the AspectJ 1.0.3 compiler’s
error messages. The consensus was that the error messages
were good for compiling pure Java™ code, but needed
improvement when AspectJ-specific problems occurred. In
practice, even the most confusing error messages weren’t a
problem on this project because one of the AspectJ compiler
writers was present to translate any odd messages. However, it
was clear that improving these messages would be important
for teams without this sort of on-site consulting. The clearest
lesson learned from error handling was that having the
compiler signal as many errors as possible was extremely
helpful. All of the developers on the team used the 1.0
compiler’s –Xlint options to get the most possible warnings and
the only complaint with this was that it didn’t indicate more
problems. As a result of this experience, AspectJ 1.1 provided
much more extensive support for catching simple spelling and
type errors.

The project did not test ajdoc integration for generating
Javadoc™ output, nor did it test the debugging support. It also
did not investigate any issues in working with design tools that
convert between Java code and UML diagrams, nor testing
tools that parse Java code. There should not be integration
issues with these if the project uses .aj file extensions for
AspectJ source, rather than .java. However, these tools may
introduce secondary problems (e.g., refactorings that break
pointcuts or generated tests that don’t take account of aspect
behavior). Whilst the AspectJ compiler (ajc) produces 100%
legal Java bytecodes, some tools that work at the bytecode level
(for example, disassemblers) can get confused by the bytecodes
that ajc emits. In general this is because the tools rely on
recognizing bytecode patterns emitted by javac.

4. EFFECTIVE ADOPTION
The results from the prototyping were quite promising
technically, and the issues encountered were deemed to be
addressable. Because of the scale and importance of the system
under study, the dominant concerns to be considered in an
adoption roadmap were risk management and change
management (i.e., how to train people and how to change
processes to use the technology).

The principles defined in the follow up plan were phased
adoption, clear vision and sponsorship, and building on
continued successes from using the technology. Indeed, these
same factors worked together to produce good results in short
iterations during the investigation process. Our experience has
shown that face to face meetings accompanied by
demonstrations of the technology in action are the most
effective means of exciting others about the technology’s
potential. Indeed, whilst white papers, technical reports, and
presentations can give an intellectual understanding of the
benefits of aspect-oriented programming, demonstrations have
proven to be the key that unlocks doors like nothing else.

There’s something about the claims of AO that seem just ‘too
good to be true’ until you’ve seen it for yourself.

The phases of adoption identified were the use of:

1. development-time aspects to police architectural,
design, and coding guidelines

2. auxiliary aspects for policies such as those
discussed in this report

3. core aspects used to implement functional parts of
the design

4. the creation of aspect libraries
Progress has been made in all of these areas. The phased
adoption plan also envisioned increasing the scale and scope of
usage to achieve increasing benefits over multiple releases.
This, in turn, allowed for isolating how the technology would
impact different roles and skill sets. In particular, an important
goal would be to allow a small number of specialists to define
and maintain project policies in AspectJ initially. This would
limit the training required for most developers to a basic level
of awareness, rather than learning how to design and develop
with AOP. Some groups we have subsequently worked with
have rejected this idea, preferring not to create a divide
amongst the development team. Others are proceeding more as
initially envisaged.

An additional consideration was the need to address integration
with a broader set of tools, including how to interoperate with
ones that parse Java code such as UML modeling and testing
tools. To date this has not yet proved to be a major stumbling
block.

5. CONCLUSIONS
The project had tremendous success in converting broad
system-wide policies from large and potentially ambiguous
paper documents into AspectJ source code that unambiguously
captured the same policies. This made the policies easier to
understand, implement, and modify. It provided a convincing
demonstration that AspectJ could be used to modularize many
important crosscutting problems. While the findings were
mostly positive technically, the project also identified some
specific areas, primarily tools maturity issues that needed
improvement. Subsequently, many of these became the focus of
improvement in developing AspectJ 1.1 and AJDT.

The project also achieved significant results culturally; a large
organization learned about AspectJ and AOSD and many
individuals started applying it to their own projects. Naturally,
adopting a new technology like AOSD is not to be taken lightly
on a massive engineering project, and there is a lot of
additional effort required to mitigate risks and manage the
change. Overall, the results of this effort were deemed to be
very favorable and formed an important input to IBM’s initial
assessment of AOSD.

The IBM team has continued to work with AspectJ and to grow
their involvement in the AspectJ project. Significant additional
work has been done to further the team’s understanding of how
AspectJ can be applied within the product-line, and progress
has been made in all the envisioned adoption phases.

6. ACKNOWLEDGEMENTS
Thanks to Tracy Gardner, Ian Robinson, Jeremy Hughes,
Graham Wallis, and all the team at IBM Hursley for making
this project happen. Thanks also to Gregor Kiczales who was
instrumental in delivering the consulting, and to Erik Hilsdale,
Mik Kersten and Wes Isberg for supporting the project efforts.
George Harley and Matthew Webster helped carry the flag for
subsequent extensions of the work inside IBM.

IBM is a trademark of International Business Machines
Corporation in the United States, other countries or both. Java
and all Java-based trademarks are trademarks of Sun
Microsystems, Inc. in the United States, other countries, or
both. Other company, product or service names may be
trademarks or service marks of others.

7. REFERENCES
[1] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,

J., Griswold, W. An Overview of AspectJ. In Proc. of
ECOOP ’01, LNCS 2072, pp. 327-353, Springer, 2001

[2] 2. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J., Irwin, J. Aspect Oriented
Programming. In Proc. of ECOOP ’97, LNCS 1241, pp.
220-243, Springer-Verlag, 1997

[3] 3. Log4j: The Apache Jakarta Project,
http://jakarta.apache.org/log4j/docs/

[4] 4. Jakarta Commons Logging: The Apache Jakarta Project,
http://jakarta.apache.org/commons/logging.html

[5] 5. The AspectJ project team: New pertype aspect specifier,
AspectJ 1.1 Readme.

[6] 6. Colyer, A. Clement, A. and Kersten, M. Aspect
Oriented Programming with AJDT. In proceedings
Analysis of Aspect Oriented Software workshop, ECOOP
2003.

[7] 7. Davies, J. et al. Aspect Oriented Profiler. Practitioner
Report, AOSD 200

i Ron Bodkin was working for Palo Alto Research Center,
Inc. at the time the initial study was undertaken.

